\(\int x^3 (a+b (c x^n)^{\frac {1}{n}})^p \, dx\) [3022]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 171 \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=-\frac {a^3 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{1+p}}{b^4 (1+p)}+\frac {3 a^2 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{2+p}}{b^4 (2+p)}-\frac {3 a x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{3+p}}{b^4 (3+p)}+\frac {x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{4+p}}{b^4 (4+p)} \]

[Out]

-a^3*x^4*(a+b*(c*x^n)^(1/n))^(p+1)/b^4/(p+1)/((c*x^n)^(4/n))+3*a^2*x^4*(a+b*(c*x^n)^(1/n))^(2+p)/b^4/(2+p)/((c
*x^n)^(4/n))-3*a*x^4*(a+b*(c*x^n)^(1/n))^(3+p)/b^4/(3+p)/((c*x^n)^(4/n))+x^4*(a+b*(c*x^n)^(1/n))^(4+p)/b^4/(4+
p)/((c*x^n)^(4/n))

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {375, 45} \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=-\frac {a^3 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{p+1}}{b^4 (p+1)}+\frac {3 a^2 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{p+2}}{b^4 (p+2)}-\frac {3 a x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{p+3}}{b^4 (p+3)}+\frac {x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{p+4}}{b^4 (p+4)} \]

[In]

Int[x^3*(a + b*(c*x^n)^n^(-1))^p,x]

[Out]

-((a^3*x^4*(a + b*(c*x^n)^n^(-1))^(1 + p))/(b^4*(1 + p)*(c*x^n)^(4/n))) + (3*a^2*x^4*(a + b*(c*x^n)^n^(-1))^(2
 + p))/(b^4*(2 + p)*(c*x^n)^(4/n)) - (3*a*x^4*(a + b*(c*x^n)^n^(-1))^(3 + p))/(b^4*(3 + p)*(c*x^n)^(4/n)) + (x
^4*(a + b*(c*x^n)^n^(-1))^(4 + p))/(b^4*(4 + p)*(c*x^n)^(4/n))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 375

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*((c*x^q
)^(1/q))^(m + 1)), Subst[Int[x^m*(a + b*x^(n*q))^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, d, m, n, p, q
}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]

Rubi steps \begin{align*} \text {integral}& = \left (x^4 \left (c x^n\right )^{-4/n}\right ) \text {Subst}\left (\int x^3 (a+b x)^p \, dx,x,\left (c x^n\right )^{\frac {1}{n}}\right ) \\ & = \left (x^4 \left (c x^n\right )^{-4/n}\right ) \text {Subst}\left (\int \left (-\frac {a^3 (a+b x)^p}{b^3}+\frac {3 a^2 (a+b x)^{1+p}}{b^3}-\frac {3 a (a+b x)^{2+p}}{b^3}+\frac {(a+b x)^{3+p}}{b^3}\right ) \, dx,x,\left (c x^n\right )^{\frac {1}{n}}\right ) \\ & = -\frac {a^3 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{1+p}}{b^4 (1+p)}+\frac {3 a^2 x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{2+p}}{b^4 (2+p)}-\frac {3 a x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{3+p}}{b^4 (3+p)}+\frac {x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{4+p}}{b^4 (4+p)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.66 \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\frac {x^4 \left (c x^n\right )^{-4/n} \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^{1+p} \left (-\frac {a^3}{1+p}+\frac {3 a^2 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}{2+p}-\frac {3 a \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^2}{3+p}+\frac {\left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^3}{4+p}\right )}{b^4} \]

[In]

Integrate[x^3*(a + b*(c*x^n)^n^(-1))^p,x]

[Out]

(x^4*(a + b*(c*x^n)^n^(-1))^(1 + p)*(-(a^3/(1 + p)) + (3*a^2*(a + b*(c*x^n)^n^(-1)))/(2 + p) - (3*a*(a + b*(c*
x^n)^n^(-1))^2)/(3 + p) + (a + b*(c*x^n)^n^(-1))^3/(4 + p)))/(b^4*(c*x^n)^(4/n))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 5.93 (sec) , antiderivative size = 1127, normalized size of antiderivative = 6.59

method result size
risch \(\text {Expression too large to display}\) \(1127\)

[In]

int(x^3*(a+b*(c*x^n)^(1/n))^p,x,method=_RETURNVERBOSE)

[Out]

(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+a)
^(1+p)/(c^(1/n))*x^4/((x^n)^(1/n))*exp(-1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*
c*x^n))/n)/b/(1+p)-3/b/(1+p)*(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(c
sgn(I*c)-csgn(I*c*x^n))/n)+a)^(1+p)/(4+p)/((x^n)^(1/n))*x^4/(c^(1/n))*exp(-1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n
)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)-3/b^2/(1+p)*(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-
csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+a)^(1+p)/(4+p)/(3+p)*a*x^4/((x^n)^(1/n))^2/(c^(1/n))^2
*exp(-I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)-3/b^2/(1+p)*(b*(x^n)^(1/n)*
c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+a)^(1+p)/(4+p)/(3
+p)*a*x^4/((x^n)^(1/n))^2/(c^(1/n))^2*exp(-I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c
*x^n))/n)*p-6/b^4/(1+p)*(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I
*c)-csgn(I*c*x^n))/n)+a)^(1+p)/(4+p)*a^3/(2+p)*x^4/((x^n)^(1/n))^4/(c^(1/n))^4/(3+p)*exp(-2*I*Pi*csgn(I*c*x^n)
*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+6/b^3/(1+p)*(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csg
n(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+a)^(1+p)/(4+p)/(2+p)/(3+p)*a^2*x^4/((x^n)
^(1/n))^3/(c^(1/n))^3*exp(-3/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)+6/
b^3/(1+p)*(b*(x^n)^(1/n)*c^(1/n)*exp(1/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x
^n))/n)+a)^(1+p)/(4+p)/(2+p)/(3+p)*a^2*x^4/((x^n)^(1/n))^3/(c^(1/n))^3*exp(-3/2*I*Pi*csgn(I*c*x^n)*(-csgn(I*x^
n)+csgn(I*c*x^n))*(csgn(I*c)-csgn(I*c*x^n))/n)*p

Fricas [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.07 \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\frac {{\left (6 \, a^{3} b c^{\left (\frac {1}{n}\right )} p x + {\left (b^{4} p^{3} + 6 \, b^{4} p^{2} + 11 \, b^{4} p + 6 \, b^{4}\right )} c^{\frac {4}{n}} x^{4} + {\left (a b^{3} p^{3} + 3 \, a b^{3} p^{2} + 2 \, a b^{3} p\right )} c^{\frac {3}{n}} x^{3} - 6 \, a^{4} - 3 \, {\left (a^{2} b^{2} p^{2} + a^{2} b^{2} p\right )} c^{\frac {2}{n}} x^{2}\right )} {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p}}{{\left (b^{4} p^{4} + 10 \, b^{4} p^{3} + 35 \, b^{4} p^{2} + 50 \, b^{4} p + 24 \, b^{4}\right )} c^{\frac {4}{n}}} \]

[In]

integrate(x^3*(a+b*(c*x^n)^(1/n))^p,x, algorithm="fricas")

[Out]

(6*a^3*b*c^(1/n)*p*x + (b^4*p^3 + 6*b^4*p^2 + 11*b^4*p + 6*b^4)*c^(4/n)*x^4 + (a*b^3*p^3 + 3*a*b^3*p^2 + 2*a*b
^3*p)*c^(3/n)*x^3 - 6*a^4 - 3*(a^2*b^2*p^2 + a^2*b^2*p)*c^(2/n)*x^2)*(b*c^(1/n)*x + a)^p/((b^4*p^4 + 10*b^4*p^
3 + 35*b^4*p^2 + 50*b^4*p + 24*b^4)*c^(4/n))

Sympy [F]

\[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\int x^{3} \left (a + b \left (c x^{n}\right )^{\frac {1}{n}}\right )^{p}\, dx \]

[In]

integrate(x**3*(a+b*(c*x**n)**(1/n))**p,x)

[Out]

Integral(x**3*(a + b*(c*x**n)**(1/n))**p, x)

Maxima [F]

\[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\int { {\left (\left (c x^{n}\right )^{\left (\frac {1}{n}\right )} b + a\right )}^{p} x^{3} \,d x } \]

[In]

integrate(x^3*(a+b*(c*x^n)^(1/n))^p,x, algorithm="maxima")

[Out]

integrate(((c*x^n)^(1/n)*b + a)^p*x^3, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 384 vs. \(2 (179) = 358\).

Time = 0.36 (sec) , antiderivative size = 384, normalized size of antiderivative = 2.25 \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\frac {{\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} b^{4} c^{\frac {4}{n}} p^{3} x^{4} + {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a b^{3} c^{\frac {3}{n}} p^{3} x^{3} + 6 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} b^{4} c^{\frac {4}{n}} p^{2} x^{4} + 3 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a b^{3} c^{\frac {3}{n}} p^{2} x^{3} + 11 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} b^{4} c^{\frac {4}{n}} p x^{4} - 3 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a^{2} b^{2} c^{\frac {2}{n}} p^{2} x^{2} + 2 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a b^{3} c^{\frac {3}{n}} p x^{3} + 6 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} b^{4} c^{\frac {4}{n}} x^{4} - 3 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a^{2} b^{2} c^{\frac {2}{n}} p x^{2} + 6 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a^{3} b c^{\left (\frac {1}{n}\right )} p x - 6 \, {\left (b c^{\left (\frac {1}{n}\right )} x + a\right )}^{p} a^{4}}{b^{4} c^{\frac {4}{n}} p^{4} + 10 \, b^{4} c^{\frac {4}{n}} p^{3} + 35 \, b^{4} c^{\frac {4}{n}} p^{2} + 50 \, b^{4} c^{\frac {4}{n}} p + 24 \, b^{4} c^{\frac {4}{n}}} \]

[In]

integrate(x^3*(a+b*(c*x^n)^(1/n))^p,x, algorithm="giac")

[Out]

((b*c^(1/n)*x + a)^p*b^4*c^(4/n)*p^3*x^4 + (b*c^(1/n)*x + a)^p*a*b^3*c^(3/n)*p^3*x^3 + 6*(b*c^(1/n)*x + a)^p*b
^4*c^(4/n)*p^2*x^4 + 3*(b*c^(1/n)*x + a)^p*a*b^3*c^(3/n)*p^2*x^3 + 11*(b*c^(1/n)*x + a)^p*b^4*c^(4/n)*p*x^4 -
3*(b*c^(1/n)*x + a)^p*a^2*b^2*c^(2/n)*p^2*x^2 + 2*(b*c^(1/n)*x + a)^p*a*b^3*c^(3/n)*p*x^3 + 6*(b*c^(1/n)*x + a
)^p*b^4*c^(4/n)*x^4 - 3*(b*c^(1/n)*x + a)^p*a^2*b^2*c^(2/n)*p*x^2 + 6*(b*c^(1/n)*x + a)^p*a^3*b*c^(1/n)*p*x -
6*(b*c^(1/n)*x + a)^p*a^4)/(b^4*c^(4/n)*p^4 + 10*b^4*c^(4/n)*p^3 + 35*b^4*c^(4/n)*p^2 + 50*b^4*c^(4/n)*p + 24*
b^4*c^(4/n))

Mupad [F(-1)]

Timed out. \[ \int x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^p \, dx=\int x^3\,{\left (a+b\,{\left (c\,x^n\right )}^{1/n}\right )}^p \,d x \]

[In]

int(x^3*(a + b*(c*x^n)^(1/n))^p,x)

[Out]

int(x^3*(a + b*(c*x^n)^(1/n))^p, x)